Close
  Indian J Med Microbiol
 

Figure 4: Principal component analysis and classification performance. (a) Joint and (b) individual scatter plots of principal components corresponding to the support vector machines scores obtained in the 2nd step of the classification method. Red and green circles represent the principal component values for true and false assay-positive samples. (c) Optimization of the true versus false-positive classification by selecting the sensitivity penalty factor using the (top) first and (bottom) second principal component as the feature in the classifier. Propagation of classification accuracy, specificity, and sensitivity as a function of the sensitivity penalty factor are shown in each figure

Figure 4: Principal component analysis and classification performance. (a) Joint and (b) individual scatter plots of principal components corresponding to the support vector machines scores obtained in the 2<sup>nd</sup> step of the classification method. Red and green circles represent the principal component values for true and false assay-positive samples. (c) Optimization of the true versus false-positive classification by selecting the sensitivity penalty factor using the (top) first and (bottom) second principal component as the feature in the classifier. Propagation of classification accuracy, specificity, and sensitivity as a function of the sensitivity penalty factor are shown in each figure