Contact us
|
Home
|
Login
| Users Online: 130
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
January
[
3
]
2021
November
[
2
]
September
[
3
]
August
[
1
]
June
[
2
]
January
[
1
]
2020
November
[
3
]
August
[
1
]
July
[
1
]
May
[
1
]
February
[
1
]
2019
December
[
2
]
September
[
1
]
August
[
2
]
July
[
2
]
June
[
1
]
May
[
1
]
April
[
1
]
March
[
1
]
February
[
2
]
2018
December
[
4
]
November
[
1
]
August
[
1
]
July
[
1
]
May
[
1
]
2017
October
[
1
]
September
[
3
]
June
[
1
]
May
[
1
]
March
[
1
]
February
[
1
]
2016
April
[
1
]
March
[
1
]
January
[
2
]
2015
October
[
3
]
September
[
3
]
June
[
4
]
March
[
2
]
January
[
1
]
2014
October
[
2
]
September
[
2
]
August
[
2
]
July
[
1
]
June
[
1
]
May
[
1
]
March
[
1
]
January
[
2
]
2013
December
[
2
]
November
[
1
]
July
[
1
]
June
[
1
]
March
[
2
]
2012
December
[
1
]
September
[
3
]
August
[
1
]
July
[
1
]
April
[
3
]
March
[
1
]
February
[
1
]
2011
August
[
2
]
July
[
2
]
June
[
1
]
May
[
1
]
March
[
2
]
January
[
1
]
2010
October
[
3
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstract
|
Book Review
|
Commentary
|
Editorial
|
Letters
|
Original Articles
|
Research Article
|
Review Articles
|
Technical Note
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Research Article:
Using XML to encode TMA DES metadata
Oliver Lyttleton, Alexander Wright, Darren Treanor, Paul Lewis
J Pathol Inform
2011, 2:40 (24 August 2011)
DOI
:10.4103/2153-3539.84233
PMID
:21969921
Background:
The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not.
Materials and Methods:
We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF.
Results:
We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service.
Conclusions:
All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (1) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
The accuracy of dynamic predictive autofocusing for whole slide imaging
Richard R McKay, Vipul A Baxi, Michael C Montalto
J Pathol Inform
2011, 2:38 (24 August 2011)
DOI
:10.4103/2153-3539.84231
PMID
:21969919
Context:
Whole slide imaging (WSI) for digital pathology involves the rapid automated acquisition of multiple high-power fields from a microscope slide containing a tissue specimen. Capturing each field in the correct focal plane is essential to create high-quality digital images. Others have described a novel focusing method which reduces the number of focal planes required to generate accurate focus. However, this method was not applied dynamically in an automated WSI system under continuous motion.
Aims:
This report measures the accuracy of this method when applied in a rapid continuous scan mode using a dual sensor WSI system with interleaved acquisition of images.
Methods:
We acquired over 400 tiles in a "stop and go" scan mode, surveying the entire z depth in each tile and used this as ground truth. We compared this ground truth focal height to the focal height determined using a rapid 3-point focus algorithm applied dynamically in a continuous scanning mode.
Results:
Our data showed the average focal height error of 0.30 (±0.27) μm compared to ground truth, which is well within the system's depth of field. On a tile by tile assessment, approximately 95% of the tiles were within the system's depth of field. Further, this method was six times faster than acquiring tiles compared to the same method in a non-continuous scan mode.
Conclusions:
The data indicates that the method employed can yield a significant improvement in scan speed while maintaining highly accurate autofocusing.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (7) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010