Contact us
|
Home
|
Login
| Users Online: 533
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
January
[
3
]
2021
December
[
1
]
November
[
3
]
September
[
1
]
May
[
1
]
April
[
3
]
January
[
1
]
2020
December
[
1
]
October
[
1
]
July
[
1
]
2019
April
[
1
]
February
[
1
]
2018
December
[
1
]
September
[
1
]
June
[
1
]
May
[
2
]
April
[
3
]
2017
December
[
1
]
November
[
1
]
October
[
1
]
September
[
1
]
July
[
1
]
June
[
1
]
April
[
2
]
March
[
1
]
February
[
2
]
2016
December
[
1
]
November
[
1
]
October
[
1
]
September
[
2
]
July
[
1
]
May
[
1
]
April
[
1
]
February
[
1
]
January
[
1
]
2015
November
[
2
]
September
[
1
]
August
[
1
]
July
[
2
]
June
[
1
]
March
[
1
]
January
[
2
]
2014
November
[
1
]
September
[
1
]
August
[
1
]
July
[
3
]
March
[
1
]
2013
September
[
1
]
August
[
1
]
January
[
1
]
2012
November
[
1
]
June
[
1
]
April
[
1
]
2011
December
[
1
]
November
[
1
]
October
[
1
]
August
[
1
]
June
[
1
]
May
[
2
]
March
[
1
]
2010
October
[
1
]
May
[
1
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstract
|
Book Review
|
Commentary
|
Editorial
|
Letters
|
Original Articles
|
Research Article
|
Review Articles
|
Technical Note
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Technical note:
An open-source software program for performing Bonferroni and related corrections for multiple comparisons
Kyle Lesack, Christopher Naugler
J Pathol Inform
2011, 2:52 (26 December 2011)
DOI
:10.4103/2153-3539.91130
PMID
:22276243
Increased type I error resulting from multiple statistical comparisons remains a common problem in the scientific literature. This may result in the reporting and promulgation of spurious findings. One approach to this problem is to correct groups of
P
-values for "family-wide significance" using a Bonferroni correction or the less conservative Bonferroni-Holm correction or to correct for the "false discovery rate" with a Benjamini-Hochberg correction. Although several solutions are available for performing this correction through commercially available software there are no widely available easy to use open source programs to perform these calculations. In this paper we present an open source program written in Python 3.2 that performs calculations for standard Bonferroni, Bonferroni-Holm and Benjamini-Hochberg corrections.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (34) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010