Contact us
|
Home
|
Login
| Users Online: 669
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
January
[
4
]
2021
December
[
4
]
November
[
1
]
September
[
3
]
August
[
1
]
June
[
2
]
May
[
2
]
April
[
1
]
March
[
1
]
February
[
3
]
January
[
3
]
2020
December
[
1
]
November
[
1
]
October
[
2
]
September
[
1
]
August
[
4
]
July
[
1
]
April
[
1
]
March
[
1
]
February
[
4
]
2019
December
[
2
]
September
[
2
]
July
[
2
]
April
[
1
]
February
[
1
]
2018
December
[
4
]
November
[
1
]
October
[
3
]
September
[
1
]
July
[
1
]
May
[
1
]
April
[
2
]
March
[
1
]
February
[
2
]
2017
December
[
3
]
March
[
3
]
2016
January
[
1
]
2014
September
[
1
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstracts
|
Brief Report
|
Commentary
|
Editorial
|
Guidelines
|
Letters
|
Original Article
|
Research Article
|
Review Article
|
Technical Note
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Original Article:
A comparison of methods for studying the tumor microenvironment's spatial heterogeneity in digital pathology specimens
Ines Panicou Nearchou, Daniel Alexander Soutar, Hideki Ueno, David James Harrison, Ognjen Arandjelovic, Peter David Caie
J Pathol Inform
2021, 12:6 (28 January 2021)
DOI
:10.4103/jpi.jpi_26_20
Background:
The tumor microenvironment is highly heterogeneous, and it is understood to affect tumor progression and patient outcome. A number of studies have reported the prognostic significance of tumor-infiltrating lymphocytes and tumor budding in colorectal cancer (CRC). However, the significance of the intratumoral heterogeneity present in the spatial distribution of these features within the tumor immune microenvironment (TIME) has not been previously reported. Evaluating this intratumoral heterogeneity may aid the understanding of the TIME's effect on patient prognosis as well as identify novel aggressive phenotypes which can be further investigated as potential targets for new treatment.
Methods:
In this study, we propose and apply two spatial statistical methodologies for the evaluation of the intratumor heterogeneity present in the distribution of CD3
+
and CD8
+
lymphocytes and tumor buds (TB) in 232 Stage II CRC cases. Getis-Ord hotspot analysis was applied to quantify the cold and hotspots, defined as regions with a significantly low or high number of each feature of interest, respectively. A novel spatial heatmap methodology for the quantification of the cold and hotspots of each feature of interest, which took into account both the interpatient heterogeneity and the intratumor heterogeneity, was further developed.
Results:
Resultant data from each analysis, characterizing the spatial intratumor heterogeneity of lymphocytes and TBs were used for the development of two new highly prognostic risk models.
Conclusions:
Our results highlight the value of applying spatial statistics for the assessment of the intratumor heterogeneity. Both Getis-Ord hotspot and our proposed spatial heatmap analysis are broadly applicable across other tissue types as well as other features of interest.
Availability:
The code underpinning this publication can be accessed at
https://doi.org/10.17630/c2306fe9-66e2-4442-ad89-f986220053e2
.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (3) ]
[Sword Plugin for Repository]
Beta
Original Article:
Effects of image quantity and image source variation on machine learning histology differential diagnosis models
Elham Vali-Betts, Kevin J Krause, Alanna Dubrovsky, Kristin Olson, John Paul Graff, Anupam Mitra, Ananya Datta-Mitra, Kenneth Beck, Aristotelis Tsirigos, Cynthia Loomis, Antonio Galvao Neto, Esther Adler, Hooman H Rashidi
J Pathol Inform
2021, 12:5 (23 January 2021)
DOI
:10.4103/jpi.jpi_69_20
Aims:
Histology, the microscopic study of normal tissues, is a crucial element of most medical curricula. Learning tools focused on histology are very important to learners who seek diagnostic competency within this important diagnostic arena. Recent developments in machine learning (ML) suggest that certain ML tools may be able to benefit this histology learning platform. Here, we aim to explore how one such tool based on a convolutional neural network, can be used to build a generalizable multi-classification model capable of classifying microscopic images of human tissue samples with the ultimate goal of providing a differential diagnosis (a list of look-alikes) for each entity.
Methods:
We obtained three institutional training datasets and one generalizability test dataset, each containing images of histologic tissues in 38 categories. Models were trained on data from single institutions, low quantity combinations of multiple institutions, and high quantity combinations of multiple institutions. Models were tested against withheld validation data, external institutional data, and generalizability test images obtained from Google image search. Performance was measured with macro and micro accuracy, sensitivity, specificity, and f1-score.
Results:
In this study, we were able to show that such a model's generalizability is dependent on both the training data source variety and the total number of training images used. Models which were trained on 760 images from only a single institution performed well on withheld internal data but poorly on external data (lower generalizability). Increasing data source diversity improved generalizability, even when decreasing data quantity: models trained on 684 images, but from three sources improved generalization accuracy between 4.05' and 18.59'. Maintaining this diversity and increasing the quantity of training images to 2280 further improved generalization accuracy between 16.51' and 32.79'.
Conclusions:
This pilot study highlights the significance of data diversity within such studies. As expected, optimal models are those that incorporate both diversity and quantity into their platforms.s
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Sword Plugin for Repository]
Beta
Original Article:
Remote reporting from home for primary diagnosis in surgical pathology: A tertiary oncology center experience during the COVID-19 pandemic
Vidya Rao, Rajiv Kumar, Sathyanarayanan Rajaganesan, Swapnil Rane, Gauri Deshpande, Subhash Yadav, Asawari Patil, Trupti Pai, Santosh Menon, Aekta Shah, Katha Rabade, Mukta Ramadwar, Poonam Panjwani, Neha Mittal, Ayushi Sahay, Bharat Rekhi, Munita Bal, Uma Sakhadeo, Sumeet Gujral, Sangeeta Desai
J Pathol Inform
2021, 12:3 (8 January 2021)
DOI
:10.4103/jpi.jpi_72_20
Background:
The COVID-19 pandemic accelerated the widespread adoption of digital pathology (DP) for primary diagnosis in surgical pathology. This paradigm shift is likely to influence how we function routinely in the postpandemic era. We present learnings from early adoption of DP for a live digital sign-out from home in a risk-mitigated environment.
Materials and Methods:
We aimed to validate DP for remote reporting from home in a real-time environment and evaluate the parameters influencing the efficiency of a digital workflow. Eighteen pathologists prospectively validated DP for remote use on 567 biopsy cases including 616 individual parts from 7 subspecialties over a duration from March 21, 2020, to June 30, 2020. The slides were digitized using Roche Ventana DP200 whole-slide scanner and reported from respective homes in a risk-mitigated environment.
Results:
Following re-review of glass slides, there was no major discordance and 1.2% (
n
= 7/567) minor discordance. The deferral rate was 4.5%. All pathologists reported from their respective homes from laptops with an average network speed of 20 megabits per second.
Conclusion:
We successfully validated and adopted a digital workflow for remote reporting with available resources and were able to provide our patients, an undisrupted access to subspecialty expertise during these unprecedented times.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (3) ]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010