Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 464  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


    Article Cited by others

ORIGINAL ARTICLE

Deep learning for classification of colorectal polyps on whole-slide images

Korbar Bruno, Olofson Andrea M, Miraflor Allen P, Nicka Catherine M, Suriawinata Matthew A, Torresani Lorenzo, Suriawinata Arief A, Hassanpour Saeed

Year : 2017| Volume: 8| Issue : 1 | Page no: 30-30

   This article has been cited by
 
1 Prediction of pouchitis after ileal pouch–anal anastomosis in patients with ulcerative colitis using artificial intelligence and deep learning
S. Mizuno, K. Okabayashi, A. Ikebata, S. Matsui, R. Seishima, K. Shigeta, Y. Kitagawa
Techniques in Coloproctology. 2022;
[Pubmed]  [Google Scholar] [DOI]
2 A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches
Xintong Li, Chen Li, Md Mamunur Rahaman, Hongzan Sun, Xiaoqi Li, Jian Wu, Yudong Yao, Marcin Grzegorzek
Artificial Intelligence Review. 2022;
[Pubmed]  [Google Scholar] [DOI]
3 Applications of machine learning in routine laboratory medicine: Current state and future directions
Naveed Rabbani, Grace Y.E. Kim, Carlos J. Suarez, Jonathan H. Chen
Clinical Biochemistry. 2022;
[Pubmed]  [Google Scholar] [DOI]
4 A deep learning model for breast ductal carcinoma in situ classification in whole slide images
Fahdi Kanavati, Shin Ichihara, Masayuki Tsuneki
Virchows Archiv. 2022;
[Pubmed]  [Google Scholar] [DOI]
5 Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer
Hang Qiu, Shuhan Ding, Jianbo Liu, Liya Wang, Xiaodong Wang
Current Oncology. 2022; 29(3): 1773
[Pubmed]  [Google Scholar] [DOI]
6 A Deep Learning Model for Cervical Cancer Screening on Liquid-Based Cytology Specimens in Whole Slide Images
Fahdi Kanavati, Naoki Hirose, Takahiro Ishii, Ayaka Fukuda, Shin Ichihara, Masayuki Tsuneki
Cancers. 2022; 14(5): 1159
[Pubmed]  [Google Scholar] [DOI]
7 Advancements in Oncology with Artificial Intelligence—A Review Article
Nikitha Vobugari, Vikranth Raja, Udhav Sethi, Kejal Gandhi, Kishore Raja, Salim R. Surani
Cancers. 2022; 14(5): 1349
[Pubmed]  [Google Scholar] [DOI]
8 A Deep Learning Convolutional Neural Network Can Differentiate Between Helicobacter Pylori Gastritis and Autoimmune Gastritis With Results Comparable to Gastrointestinal Pathologists
Michael M. Franklin, Fred A. Schultz, Marissa A. Tafoya, Audra A. Kerwin, Cory J. Broehm, Edgar G. Fischer, Rama R. Gullapalli, Douglas P. Clark, Joshua A. Hanson, David R. Martin
Archives of Pathology & Laboratory Medicine. 2022; 146(1): 117
[Pubmed]  [Google Scholar] [DOI]
9 Introduction to Artificial Intelligence and Machine Learning for Pathology
James H. Harrison, John R. Gilbertson, Matthew G. Hanna, Niels H. Olson, Jansen N. Seheult, James M. Sorace, Michelle N. Stram
Archives of Pathology & Laboratory Medicine. 2021; 145(10): 1228
[Pubmed]  [Google Scholar] [DOI]
10 Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
Fahdi Kanavati, Masayuki Tsuneki
Cancers. 2021; 13(21): 5368
[Pubmed]  [Google Scholar] [DOI]
11 Artificial Intelligence & Tissue Biomarkers: Advantages, Risks and Perspectives for Pathology
Cesare Lancellotti, Pierandrea Cancian, Victor Savevski, Soumya Rupa Reddy Kotha, Filippo Fraggetta, Paolo Graziano, Luca Di Tommaso
Cells. 2021; 10(4): 787
[Pubmed]  [Google Scholar] [DOI]
12 Artificial intelligence in pathological evaluation of gastrointestinal cancers
Anil Alpsoy, Aysen Yavuz, Gulsum Ozlem Elpek
Artificial Intelligence in Gastroenterology. 2021; 2(6): 141
[Pubmed]  [Google Scholar] [DOI]
13 Artificial intelligence in gastroenterology and hepatology: Status and challenges
Jia-Sheng Cao, Zi-Yi Lu, Ming-Yu Chen, Bin Zhang, Sarun Juengpanich, Jia-Hao Hu, Shi-Jie Li, Win Topatana, Xue-Yin Zhou, Xu Feng, Ji-Liang Shen, Yu Liu, Xiu-Jun Cai
World Journal of Gastroenterology. 2021; 27(16): 1664
[Pubmed]  [Google Scholar] [DOI]
14 State of machine and deep learning in histopathological applications in digestive diseases
Soma Kobayashi, Joel H Saltz, Vincent W Yang
World Journal of Gastroenterology. 2021; 27(20): 2545
[Pubmed]  [Google Scholar] [DOI]
15 Artificial intelligence in perioperative management of major gastrointestinal surgeries
Sohan Lal Solanki, Saneya Pandrowala, Abhirup Nayak, Manish Bhandare, Reshma P Ambulkar, Shailesh V Shrikhande
World Journal of Gastroenterology. 2021; 27(21): 2758
[Pubmed]  [Google Scholar] [DOI]
16 Requirements for implementation of artificial intelligence in the practice of gastrointestinal pathology
Hiroshi Yoshida, Tomoharu Kiyuna
World Journal of Gastroenterology. 2021; 27(21): 2818
[Pubmed]  [Google Scholar] [DOI]
17 Role of artificial intelligence in multidisciplinary imaging diagnosis of gastrointestinal diseases
M Alvaro Berbís, José Aneiros-Fernández, F Javier Mendoza Olivares, Enrique Nava, Antonio Luna
World Journal of Gastroenterology. 2021; 27(27): 4395
[Pubmed]  [Google Scholar] [DOI]
18 Risk Stratification of T1 Colorectal Cancer Metastasis to Lymph Nodes: Current Status and Perspective
Katsuro Ichimasa, Shin-ei Kudo, Hideyuki Miyachi, Yuta Kouyama, Masashi Misawa, Yuichi Mori
Gut and Liver. 2021; 15(6): 818
[Pubmed]  [Google Scholar] [DOI]
19 Colon Tissues Classification and Localization in Whole Slide Images Using Deep Learning
Pushpanjali Gupta, Yenlin Huang, Prasan Kumar Sahoo, Jeng-Fu You, Sum-Fu Chiang, Djeane Debora Onthoni, Yih-Jong Chern, Kuo-Yu Chao, Jy-Ming Chiang, Chien-Yuh Yeh, Wen-Sy Tsai
Diagnostics. 2021; 11(8): 1398
[Pubmed]  [Google Scholar] [DOI]
20 Deep Learning Models for Poorly Differentiated Colorectal Adenocarcinoma Classification in Whole Slide Images Using Transfer Learning
Masayuki Tsuneki, Fahdi Kanavati
Diagnostics. 2021; 11(11): 2074
[Pubmed]  [Google Scholar] [DOI]
21 Deep Learning Techniques for the Classification of Colorectal Cancer Tissue
Min-Jen Tsai, Yu-Han Tao
Electronics. 2021; 10(14): 1662
[Pubmed]  [Google Scholar] [DOI]
22 Deep Learning Models for Colorectal Polyps
Ornela Bardhi, Daniel Sierra-Sosa, Begonya Garcia-Zapirain, Luis Bujanda
Information. 2021; 12(6): 245
[Pubmed]  [Google Scholar] [DOI]
23 Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study
Veronika Shavlokhova, Sameena Sandhu, Christa Flechtenmacher, Istvan Koveshazi, Florian Neumeier, Víctor Padrón-Laso, Žan Jonke, Babak Saravi, Michael Vollmer, Andreas Vollmer, Jürgen Hoffmann, Michael Engel, Oliver Ristow, Christian Freudlsperger
Journal of Clinical Medicine. 2021; 10(22): 5326
[Pubmed]  [Google Scholar] [DOI]
24 Deep Learning Image Feature Recognition Algorithm for Judgment on the Rationality of Landscape Planning and Design
Bin Hu, Zhihan Lv
Complexity. 2021; 2021: 1
[Pubmed]  [Google Scholar] [DOI]
25 Artificial Intelligence in Cancer Research and Precision Medicine
Bhavneet Bhinder, Coryandar Gilvary, Neel S. Madhukar, Olivier Elemento
Cancer Discovery. 2021; 11(4): 900
[Pubmed]  [Google Scholar] [DOI]
26 Deep Learning Models for Gastric Signet Ring Cell Carcinoma Classification in Whole Slide Images
Fahdi Kanavati, Shin Ichihara, Michael Rambeau, Osamu Iizuka, Koji Arihiro, Masayuki Tsuneki
Technology in Cancer Research & Treatment. 2021; 20: 1533033821
[Pubmed]  [Google Scholar] [DOI]
27 A Cloud-Based Platform for Big Data-Driven CPS Modeling of Robots
Naiheng Zhang
IEEE Access. 2021; 9: 34667
[Pubmed]  [Google Scholar] [DOI]
28 An Uncertainty-Aware Transfer Learning-Based Framework for COVID-19 Diagnosis
Afshar Shamsi, Hamzeh Asgharnezhad, Shirin Shamsi Jokandan, Abbas Khosravi, Parham M. Kebria, Darius Nahavandi, Saeid Nahavandi, Dipti Srinivasan
IEEE Transactions on Neural Networks and Learning Systems. 2021; 32(4): 1408
[Pubmed]  [Google Scholar] [DOI]
29 Machine learning-based decision tree classifier for the diagnosis of progressive supranuclear palsy and corticobasal degeneration
Shunsuke Koga, Xiaolai Zhou, Dennis W. Dickson
Neuropathology and Applied Neurobiology. 2021; 47(7): 931
[Pubmed]  [Google Scholar] [DOI]
30 Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet
Roberto Morelli, Luca Clissa, Roberto Amici, Matteo Cerri, Timna Hitrec, Marco Luppi, Lorenzo Rinaldi, Fabio Squarcio, Antonio Zoccoli
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
31 Classification of colorectal tissue images from high throughput tissue microarrays by ensemble deep learning methods
Huu-Giao Nguyen, Annika Blank, Heather E. Dawson, Alessandro Lugli, Inti Zlobec
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
32 Development and evaluation of a deep neural network for histologic classification of renal cell carcinoma on biopsy and surgical resection slides
Mengdan Zhu, Bing Ren, Ryland Richards, Matthew Suriawinata, Naofumi Tomita, Saeed Hassanpour
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
33 A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images
Fahdi Kanavati, Gouji Toyokawa, Seiya Momosaki, Hiroaki Takeoka, Masaki Okamoto, Koji Yamazaki, Sadanori Takeo, Osamu Iizuka, Masayuki Tsuneki
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
34 A deep learning model to detect pancreatic ductal adenocarcinoma on endoscopic ultrasound-guided fine-needle biopsy
Yoshiki Naito, Masayuki Tsuneki, Noriyoshi Fukushima, Yutaka Koga, Michiyo Higashi, Kenji Notohara, Shinichi Aishima, Nobuyuki Ohike, Takuma Tajiri, Hiroshi Yamaguchi, Yuki Fukumura, Motohiro Kojima, Kenichi Hirabayashi, Yoshihiro Hamada, Tomoko Norose, Keita Kai, Yuko Omori, Aoi Sukeda, Hirotsugu Noguchi, Kaori Uchino, Junya Itakura, Yoshinobu Okabe, Yuichi Yamada, Jun Akiba, Fahdi Kanavati, Yoshinao Oda, Toru Furukawa, Hirohisa Yano
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
35 CAD systems for colorectal cancer from WSI are still not ready for clinical acceptance
Sara P. Oliveira, Pedro C. Neto, João Fraga, Diana Montezuma, Ana Monteiro, João Monteiro, Liliana Ribeiro, Sofia Gonçalves, Isabel M. Pinto, Jaime S. Cardoso
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
36 A deep learning model for gastric diffuse-type adenocarcinoma classification in whole slide images
Fahdi Kanavati, Masayuki Tsuneki
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
37 Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning
Changjiang Zhou, Yi Jin, Yuzong Chen, Shan Huang, Rengpeng Huang, Yuhong Wang, Youcai Zhao, Yao Chen, Lingchuan Guo, Jun Liao
Computerized Medical Imaging and Graphics. 2021; 88: 101861
[Pubmed]  [Google Scholar] [DOI]
38 Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review
Sara Kuntz, Eva Krieghoff-Henning, Jakob N. Kather, Tanja Jutzi, Julia Höhn, Lennard Kiehl, Achim Hekler, Elizabeth Alwers, Christof von Kalle, Stefan Fröhling, Jochen S. Utikal, Hermann Brenner, Michael Hoffmeister, Titus J. Brinker
European Journal of Cancer. 2021; 155: 200
[Pubmed]  [Google Scholar] [DOI]
39 Artificial intelligence and computational pathology
Miao Cui, David Y. Zhang
Laboratory Investigation. 2021; 101(4): 412
[Pubmed]  [Google Scholar] [DOI]
40 Development of a prognostic model for mortality in COVID-19 infection using machine learning
Adam L. Booth, Elizabeth Abels, Peter McCaffrey
Modern Pathology. 2021; 34(3): 522
[Pubmed]  [Google Scholar] [DOI]
41 Deep learning in cancer pathology: a new generation of clinical biomarkers
Amelie Echle, Niklas Timon Rindtorff, Titus Josef Brinker, Tom Luedde, Alexander Thomas Pearson, Jakob Nikolas Kather
British Journal of Cancer. 2021; 124(4): 686
[Pubmed]  [Google Scholar] [DOI]
42 Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
James A. Diao, Jason K. Wang, Wan Fung Chui, Victoria Mountain, Sai Chowdary Gullapally, Ramprakash Srinivasan, Richard N. Mitchell, Benjamin Glass, Sara Hoffman, Sudha K. Rao, Chirag Maheshwari, Abhik Lahiri, Aaditya Prakash, Ryan McLoughlin, Jennifer K. Kerner, Murray B. Resnick, Michael C. Montalto, Aditya Khosla, Ilan N. Wapinski, Andrew H. Beck, Hunter L. Elliott, Amaro Taylor-Weiner
Nature Communications. 2021; 12(1)
[Pubmed]  [Google Scholar] [DOI]
43 Selection, Visualization, and Interpretation of Deep Features in Lung Adenocarcinoma and Squamous Cell Carcinoma
Taher Dehkharghanian, Shahryar Rahnamayan, Abtin Riasatian, Azam A. Bidgoli, Shivam Kalra, Manit Zaveri, Morteza Babaie, Mahjabin S. Seyed Sajadi, Ricardo Gonzalelz, Phedias Diamandis, Liron Pantanowitz, Tao Huang, Hamid R. Tizhoosh
The American Journal of Pathology. 2021; 191(12): 2172
[Pubmed]  [Google Scholar] [DOI]
44 Closing the translation gap: AI applications in digital pathology
David F. Steiner, Po-Hsuan Cameron Chen, Craig H. Mermel
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2021; 1875(1): 188452
[Pubmed]  [Google Scholar] [DOI]
45 Evaluation of an Artificial Intelligence–Augmented Digital System for Histologic Classification of Colorectal Polyps
Mustafa Nasir-Moin, Arief A. Suriawinata, Bing Ren, Xiaoying Liu, Douglas J. Robertson, Srishti Bagchi, Naofumi Tomita, Jason W. Wei, Todd A. MacKenzie, Judy R. Rees, Saeed Hassanpour
JAMA Network Open. 2021; 4(11): e2135271
[Pubmed]  [Google Scholar] [DOI]
46 Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning
Yuan Li, Yang Zhang, Enlong Zhang, Yongye Chen, Qizheng Wang, Ke Liu, Hon J. Yu, Huishu Yuan, Ning Lang, Min-Ying Su
European Radiology. 2021; 31(12): 9612
[Pubmed]  [Google Scholar] [DOI]
47 Evaluation of a Deep Neural Network for Automated Classification of Colorectal Polyps on Histopathologic Slides
Jason W. Wei, Arief A. Suriawinata, Louis J. Vaickus, Bing Ren, Xiaoying Liu, Mikhail Lisovsky, Naofumi Tomita, Behnaz Abdollahi, Adam S. Kim, Dale C. Snover, John A. Baron, Elizabeth L. Barry, Saeed Hassanpour
JAMA Network Open. 2020; 3(4): e203398
[Pubmed]  [Google Scholar] [DOI]
48 Emerging role of deep learning-based artificial intelligence in tumor pathology
Yahui Jiang, Meng Yang, Shuhao Wang, Xiangchun Li, Yan Sun
Cancer Communications. 2020; 40(4): 154
[Pubmed]  [Google Scholar] [DOI]
49 Machine learning in haematological malignancies
Nathan Radakovich, Matthew Nagy, Aziz Nazha
The Lancet Haematology. 2020; 7(7): e541
[Pubmed]  [Google Scholar] [DOI]
50 Colorectal Disease Classification Using Efficiently Scaled Dilation in Convolutional Neural Network
Sahadev Poudel, Yoon Jae Kim, Duc My Vo, Sang-Woong Lee
IEEE Access. 2020; 8: 99227
[Pubmed]  [Google Scholar] [DOI]
51 Application of Deep Learning Algorithm in Feature Mining and Rapid Identification of Colorectal Image
Mingchao Du, Min Tao, Jian Hong, Dian Zhou, Shuihua Wang
IEEE Access. 2020; 8: 128830
[Pubmed]  [Google Scholar] [DOI]
52 A Novel Framework for Classifying Leather Surface Defects Based on a Parameter Optimized Residual Network
Jiehang Deng, Jiaxin Liu, Changzheng Wu, Tao Zhong, Guosheng Gu, Bingo Wing-Kuen Ling
IEEE Access. 2020; 8: 192109
[Pubmed]  [Google Scholar] [DOI]
53 Predicting primary site of secondary liver cancer with a neural estimator of metastatic origin
Geoffrey F. Schau, Erik A. Burlingame, Guillaume Thibault, Tauangtham Anekpuritanang, Ying Wang, Joe W. Gray, Christopher Corless, Young H. Chang
Journal of Medical Imaging. 2020; 7(01): 1
[Pubmed]  [Google Scholar] [DOI]
54 Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis
Xi Wang, Hao Chen, Caixia Gan, Huangjing Lin, Qi Dou, Efstratios Tsougenis, Qitao Huang, Muyan Cai, Pheng-Ann Heng
IEEE Transactions on Cybernetics. 2020; 50(9): 3950
[Pubmed]  [Google Scholar] [DOI]
55 Classification of noiseless corneal image using capsule networks
H. James Deva Koresh, Shanty Chacko
Soft Computing. 2020; 24(21): 16201
[Pubmed]  [Google Scholar] [DOI]
56 Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours
Osamu Iizuka, Fahdi Kanavati, Kei Kato, Michael Rambeau, Koji Arihiro, Masayuki Tsuneki
Scientific Reports. 2020; 10(1)
[Pubmed]  [Google Scholar] [DOI]
57 Weakly-supervised learning for lung carcinoma classification using deep learning
Fahdi Kanavati, Gouji Toyokawa, Seiya Momosaki, Michael Rambeau, Yuka Kozuma, Fumihiro Shoji, Koji Yamazaki, Sadanori Takeo, Osamu Iizuka, Masayuki Tsuneki
Scientific Reports. 2020; 10(1)
[Pubmed]  [Google Scholar] [DOI]
58

The Increasing Role of Artificial Intelligence in Health Care: Will Robots Replace Doctors in the Future?

Abdullah Shuaib, Husain Arian, Ali Shuaib
International Journal of General Medicine. 2020; Volume 13: 891
[Pubmed]  [Google Scholar] [DOI]
59 Artificial intelligence technology applications in the pathologic diagnosis of the gastrointestinal tract
Leonardo S Lino-Silva, Diana L Xinaxtle
Future Oncology. 2020; 16(34): 2845
[Pubmed]  [Google Scholar] [DOI]
60 Artificial Intelligence to Decode Cancer Mechanism: Beyond Patient Stratification for Precision Oncology
Sandip Kumar Patel, Bhawana George, Vineeta Rai
Frontiers in Pharmacology. 2020; 11
[Pubmed]  [Google Scholar] [DOI]
61 The Application of Artificial Intelligence in Prostate Cancer Management—What Improvements Can Be Expected? A Systematic Review
Ronan Thenault, Kevin Kaulanjan, Thomas Darde, Nathalie Rioux-Leclercq, Karim Bensalah, Marie Mermier, Zine-eddine Khene, Benoit Peyronnet, Shahrokh Shariat, Benjamin Pradère, Romain Mathieu
Applied Sciences. 2020; 10(18): 6428
[Pubmed]  [Google Scholar] [DOI]
62 Successful Identification of Nasopharyngeal Carcinoma in Nasopharyngeal Biopsies Using Deep Learning
Wen-Yu Chuang, Shang-Hung Chang, Wei-Hsiang Yu, Cheng-Kun Yang, Chi-Ju Yeh, Shir-Hwa Ueng, Yu-Jen Liu, Tai-Di Chen, Kuang-Hua Chen, Yi-Yin Hsieh, Yi Hsia, Tong-Hong Wang, Chuen Hsueh, Chang-Fu Kuo, Chao-Yuan Yeh
Cancers. 2020; 12(2): 507
[Pubmed]  [Google Scholar] [DOI]
63 Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review
Nishant Thakur, Hongjun Yoon, Yosep Chong
Cancers. 2020; 12(7): 1884
[Pubmed]  [Google Scholar] [DOI]
64 Deep Learning for Whole-Slide Tissue Histopathology Classification: A Comparative Study in the Identification of Dysplastic and Non-Dysplastic Barrett’s Esophagus
Rasoul Sali, Nazanin Moradinasab, Shan Guleria, Lubaina Ehsan, Philip Fernandes, Tilak U. Shah, Sana Syed, Donald E. Brown
Journal of Personalized Medicine. 2020; 10(4): 141
[Pubmed]  [Google Scholar] [DOI]
65 Enhanced Image-Based Endoscopic Pathological Site Classification Using an Ensemble of Deep Learning Models
Dat Tien Nguyen, Min Beom Lee, Tuyen Danh Pham, Ganbayar Batchuluun, Muhammad Arsalan, Kang Ryoung Park
Sensors. 2020; 20(21): 5982
[Pubmed]  [Google Scholar] [DOI]
66 A Deep Learning Convolutional Neural Network Can Recognize Common Patterns of Injury in Gastric Pathology
David R. Martin, Joshua A. Hanson, Rama R. Gullapalli, Fred A. Schultz, Aisha Sethi, Douglas P. Clark
Archives of Pathology & Laboratory Medicine. 2020; 144(3): 370
[Pubmed]  [Google Scholar] [DOI]
67 Potential applications of artificial intelligence in colorectal polyps and cancer: Recent advances and prospects
Ke-Wei Wang, Ming Dong
World Journal of Gastroenterology. 2020; 26(34): 5090
[Pubmed]  [Google Scholar] [DOI]
68 Automating the Paris System for urine cytopathology—A hybrid deep-learning and morphometric approach
Louis J. Vaickus, Arief A. Suriawinata, Jason W. Wei, Xiaoying Liu
Cancer Cytopathology. 2019; 127(2): 98
[Pubmed]  [Google Scholar] [DOI]
69 Deep learning based tissue analysis predicts outcome in colorectal cancer
Dmitrii Bychkov,Nina Linder,Riku Turkki,Stig Nordling,Panu E. Kovanen,Clare Verrill,Margarita Walliander,Mikael Lundin,Caj Haglund,Johan Lundin
Scientific Reports. 2018; 8(1)
[Pubmed]  [Google Scholar] [DOI]

 

Read this article