Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 461  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


    Article Cited by others

RESEARCH ARTICLE

Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples

Turkki Riku, Linder Nina, Kovanen Panu E, Pellinen Teijo, Lundin Johan

Year : 2016| Volume: 7| Issue : 1 | Page no: 38-38

   This article has been cited by
 
1 Breast cancer detection using artificial intelligence techniques: A systematic literature review
Ali Bou Nassif, Manar Abu Talib, Qassim Nasir, Yaman Afadar, Omar Elgendy
Artificial Intelligence in Medicine. 2022; : 102276
[Pubmed]  [Google Scholar] [DOI]
2 Outcome and biomarker supervised deep learning for survival prediction in two multicenter breast cancer series
Dmitrii Bychkov, Heikki Joensuu, Stig Nordling, Aleksei Tiulpin, Hakan Kücükel, Mikael Lundin, Harri Sihto, Jorma Isola, Tiina Lehtimäki, Pirkko-Liisa Kellokumpu-Lehtinen, Karlvon Smitten, Johan Lundin, Nina Linder
Journal of Pathology Informatics. 2022; 13(1): 9
[Pubmed]  [Google Scholar] [DOI]
3 A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains
Lyndon Chan, Mahdi S. Hosseini, Konstantinos N. Plataniotis
International Journal of Computer Vision. 2021; 129(2): 361
[Pubmed]  [Google Scholar] [DOI]
4 A Study of the Recent Trends of Immunology: Key Challenges, Domains, Applications, Datasets, and Future Directions
Sharnil Pandya, Aanchal Thakur, Santosh Saxena, Nandita Jassal, Chirag Patel, Kirit Modi, Pooja Shah, Rahul Joshi, Sudhanshu Gonge, Kalyani Kadam, Prachi Kadam
Sensors. 2021; 21(23): 7786
[Pubmed]  [Google Scholar] [DOI]
5 Antibody Supervised Training of a Deep Learning Based Algorithm for Leukocyte Segmentation in Papillary Thyroid Carcinoma
Sebastian Stenman, Dmitrii Bychkov, Hakan Kucukel, Nina Linder, Caj Haglund, Johanna Arola, Johan Lundin
IEEE Journal of Biomedical and Health Informatics. 2021; 25(2): 422
[Pubmed]  [Google Scholar] [DOI]
6 Artificial intelligence for solid tumour diagnosis in digital pathology
Christophe Klein, Qinghe Zeng, Floriane Arbaretaz, Estelle Devêvre, Julien Calderaro, Nicolas Lomenie, Maria Chiara Maiuri
British Journal of Pharmacology. 2021; 178(21): 4291
[Pubmed]  [Google Scholar] [DOI]
7 Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response
Tong Fu, Lei-Jie Dai, Song-Yang Wu, Yi Xiao, Ding Ma, Yi-Zhou Jiang, Zhi-Ming Shao
Journal of Hematology & Oncology. 2021; 14(1)
[Pubmed]  [Google Scholar] [DOI]
8 Deep Learning Model for Cell Nuclei Segmentation and Lymphocyte Identification in Whole Slide Histology Images
Elzbieta Budginaite, Mindaugas Morkunas, Arvydas Laurinavicius, Povilas Treigys
Informatica. 2021; : 23
[Pubmed]  [Google Scholar] [DOI]
9 Artificial Intelligence-Based Segmentation of Residual Tumor in Histopathology of Pancreatic Cancer after Neoadjuvant Treatment
Boris V. Janssen, Rutger Theijse, Stijn van Roessel, Rik de Ruiter, Antonie Berkel, Joost Huiskens, Olivier R. Busch, Johanna W. Wilmink, Geert Kazemier, Pieter Valkema, Arantza Farina, Joanne Verheij, Onno J. de Boer, Marc G. Besselink
Cancers. 2021; 13(20): 5089
[Pubmed]  [Google Scholar] [DOI]
10 Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology
Faranak Sobhani, Ruth Robinson, Azam Hamidinekoo, Ioannis Roxanis, Navita Somaiah, Yinyin Yuan
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2021; 1875(2): 188520
[Pubmed]  [Google Scholar] [DOI]
11 Colorectal Histology Tumor Detection Using Ensemble Deep Neural Network
Sourodip Ghosh, Ahana Bandyopadhyay, Shreya Sahay, Richik Ghosh, Ishita Kundu, K.C. Santosh
Engineering Applications of Artificial Intelligence. 2021; 100: 104202
[Pubmed]  [Google Scholar] [DOI]
12 Artificial intelligence identifies inflammation and confirms fibroblast foci as prognostic tissue biomarkers in idiopathic pulmonary fibrosis
Kati Mäkelä, Mikko I. Mäyränpää, Hanna-Kaisa Sihvo, Paula Bergman, Eva Sutinen, Hely Ollila, Riitta Kaarteenaho, Marjukka Myllärniemi
Human Pathology. 2021; 107: 58
[Pubmed]  [Google Scholar] [DOI]
13 Emerging role of deep learning-based artificial intelligence in tumor pathology
Yahui Jiang, Meng Yang, Shuhao Wang, Xiangchun Li, Yan Sun
Cancer Communications. 2020; 40(4): 154
[Pubmed]  [Google Scholar] [DOI]
14 Predicting treatment response to neoadjuvant chemoradiotherapy in local advanced rectal cancer by biopsy digital pathology image features
Fang Zhang, Su Yao, Zhi Li, Changhong Liang, Ke Zhao, Yanqi Huang, Ying Gao, Jinrong Qu, Zhenhui Li, Zaiyi Liu
Clinical and Translational Medicine. 2020; 10(2)
[Pubmed]  [Google Scholar] [DOI]
15 A deep learning model to predict RNA-Seq expression of tumours from whole slide images
Benoît Schmauch, Alberto Romagnoni, Elodie Pronier, Charlie Saillard, Pascale Maillé, Julien Calderaro, Aurélie Kamoun, Meriem Sefta, Sylvain Toldo, Mikhail Zaslavskiy, Thomas Clozel, Matahi Moarii, Pierre Courtiol, Gilles Wainrib
Nature Communications. 2020; 11(1)
[Pubmed]  [Google Scholar] [DOI]
16 Integrative analysis of cross-modal features for the prognosis prediction of clear cell renal cell carcinoma
Zhenyuan Ning, Weihao Pan, Yuting Chen, Qing Xiao, Xinsen Zhang, Jiaxiu Luo, Jian Wang, Yu Zhang, Russell Schwartz
Bioinformatics. 2020; 36(9): 2888
[Pubmed]  [Google Scholar] [DOI]
17 Machine learning in nephrology: scratching the surface
Qi Li, Qiu-Ling Fan, Qiu-Xia Han, Wen-Jia Geng, Huan-Huan Zhao, Xiao-Nan Ding, Jing-Yao Yan, Han-Yu Zhu
Chinese Medical Journal. 2020; (6): 687
[Pubmed]  [Google Scholar] [DOI]
18 Objective Diagnosis for Histopathological Images Based on Machine Learning Techniques: Classical Approaches and New Trends
Naira Elazab, Hassan Soliman, Shaker El-Sappagh, S. M. Riazul Islam, Mohammed Elmogy
Mathematics. 2020; 8(11): 1863
[Pubmed]  [Google Scholar] [DOI]
19 Hyperspectral Superpixel-Wise Glioblastoma Tumor Detection in Histological Samples
Samuel Ortega, Himar Fabelo, Martin Halicek, Rafael Camacho, María de la Luz Plaza, Gustavo M. Callicó, Baowei Fei
Applied Sciences. 2020; 10(13): 4448
[Pubmed]  [Google Scholar] [DOI]
20 Two-Stage Classification Method for MSI Status Prediction Based on Deep Learning Approach
Hyunseok Lee, Jihyun Seo, Giwan Lee, Jongoh Park, Doyeob Yeo, Ayoung Hong
Applied Sciences. 2020; 11(1): 254
[Pubmed]  [Google Scholar] [DOI]
21 Deep-Learning–Based Characterization of Tumor-Infiltrating Lymphocytes in Breast Cancers From Histopathology Images and Multiomics Data
Zixiao Lu, Siwen Xu, Wei Shao, Yi Wu, Jie Zhang, Zhi Han, Qianjin Feng, Kun Huang
JCO Clinical Cancer Informatics. 2020; (4): 480
[Pubmed]  [Google Scholar] [DOI]
22 Society of Toxicologic Pathology Digital Pathology and Image Analysis Special Interest Group Article*: Opinion on the Application of Artificial Intelligence and Machine Learning to Digital Toxicologic Pathology
Oliver C. Turner, Famke Aeffner, Dinesh S. Bangari, Wanda High, Brian Knight, Tom Forest, Brieuc Cossic, Lauren E. Himmel, Daniel G. Rudmann, Bhupinder Bawa, Anantharaman Muthuswamy, Olulanu H. Aina, Elijah F. Edmondson, Chandrassegar Saravanan, Danielle L. Brown, Tobias Sing, Manu M. Sebastian
Toxicologic Pathology. 2020; 48(2): 277
[Pubmed]  [Google Scholar] [DOI]
23 Deep learning based tissue analysis predicts outcome in colorectal cancer
Dmitrii Bychkov,Nina Linder,Riku Turkki,Stig Nordling,Panu E. Kovanen,Clare Verrill,Margarita Walliander,Mikael Lundin,Caj Haglund,Johan Lundin
Scientific Reports. 2018; 8(1)
[Pubmed]  [Google Scholar] [DOI]
24 Predicting cancer outcomes from histology and genomics using convolutional networks
Pooya Mobadersany, Safoora Yousefi, Mohamed Amgad, David A. Gutman, Jill S. Barnholtz-Sloan, José E. Velázquez Vega, Daniel J. Brat, Lee A. D. Cooper
Proceedings of the National Academy of Sciences. 2018; 115(13)
[Pubmed]  [Google Scholar] [DOI]
25 Machine Learning Methods for Histopathological Image Analysis
Daisuke Komura,Shumpei Ishikawa
Computational and Structural Biotechnology Journal. 2018; 16: 34
[Pubmed]  [Google Scholar] [DOI]
26 The rise of deep learning in drug discovery
Hongming Chen,Ola Engkvist,Yinhai Wang,Marcus Olivecrona,Thomas Blaschke
Drug Discovery Today. 2018;
[Pubmed]  [Google Scholar] [DOI]
27 Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks
Vijaya B. Kolachalama,Priyamvada Singh,Christopher Q. Lin,Dan Mun,Mostafa E. Belghasem,Joel M. Henderson,Jean M. Francis,David J. Salant,Vipul C. Chitalia
Kidney International Reports. 2018;
[Pubmed]  [Google Scholar] [DOI]
28 A survey on deep learning in medical image analysis
Geert Litjens,Thijs Kooi,Babak Ehteshami Bejnordi,Arnaud Arindra Adiyoso Setio,Francesco Ciompi,Mohsen Ghafoorian,Jeroen A.W.M. van der Laak,Bram van Ginneken,Clara I. Sánchez
Medical Image Analysis. 2017; 42: 60
[Pubmed]  [Google Scholar] [DOI]
29 Digital image analysis in breast pathology –from image processing techniques to artificial intelligence
Stephanie Robertson,Hossein Azizpour,Kevin Smith,Johan Hartman
Translational Research. 2017;
[Pubmed]  [Google Scholar] [DOI]
30 Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models
Safoora Yousefi,Fatemeh Amrollahi,Mohamed Amgad,Chengliang Dong,Joshua E. Lewis,Congzheng Song,David A. Gutman,Sameer H. Halani,Jose Enrique Velazquez Vega,Daniel J. Brat,Lee A. D. Cooper
Scientific Reports. 2017; 7(1)
[Pubmed]  [Google Scholar] [DOI]
31 Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network: A feasibility study
Sebastian Domsch,Bettina Mürle,Sebastian Weingärtner,Jascha Zapp,Frederik Wenz,Lothar R. Schad
Magnetic Resonance in Medicine. 2017;
[Pubmed]  [Google Scholar] [DOI]
32 Introduction of Artificial Intelligence in Pathology
SangYong Song
Hanyang Medical Reviews. 2017; 37(2): 77
[Pubmed]  [Google Scholar] [DOI]

 

Read this article