Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 632  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

Year : 2021  |  Volume : 12  |  Issue : 1  |  Page : 38

Browser-based data annotation, active learning, and real-time distribution of artificial intelligence models: from tumor tissue microarrays to COVID-19 radiology

1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Maryland, USA
2 Division of Molecular Pathology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
3 Huntsman Cancer Institute, University of Utah, UT 84112, USA
4 Department of Pathology, Intermountain Healthcare Biorepository, Intermountain Healthcare, UT 84107, USA
5 Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada

Correspondence Address:
Praphulla M S Bhawsar
1603 E Jefferson St., Rockville, MD 20852
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jpi.jpi_100_20

Rights and Permissions

Background: Artificial intelligence (AI) is fast becoming the tool of choice for scalable and reliable analysis of medical images. However, constraints in sharing medical data outside the institutional or geographical space, as well as difficulties in getting AI models and modeling platforms to work across different environments, have led to a “reproducibility crisis” in digital medicine. Methods: This study details the implementation of a web platform that can be used to mitigate these challenges by orchestrating a digital pathology AI pipeline, from raw data to model inference, entirely on the local machine. We discuss how this federated platform provides governed access to data by consuming the Application Program Interfaces exposed by cloud storage services, allows the addition of user-defined annotations, facilitates active learning for training models iteratively, and provides model inference computed directly in the web browser at practically zero cost. The latter is of particular relevance to clinical workflows because the code, including the AI model, travels to the user's data, which stays private to the governance domain where it was acquired. Results: We demonstrate that the web browser can be a means of democratizing AI and advancing data socialization in medical imaging backed by consumer-facing cloud infrastructure such as As a case study, we test the accompanying platform end-to-end on a large dataset of digital breast cancer tissue microarray core images. We also showcase how it can be applied in contexts separate from digital pathology by applying it to a radiology dataset containing COVID-19 computed tomography images. Conclusions: The platform described in this report resolves the challenges to the findable, accessible, interoperable, reusable stewardship of data and AI models by integrating with cloud storage to maintain user-centric governance over the data. It also enables distributed, federated computation for AI inference over those data and proves the viability of client-side AI in medical imaging. Availability: The open-source application is publicly available at, with a short video demonstration at

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded321    
    Comments [Add]    

Recommend this journal