Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 469  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

Year : 2021  |  Volume : 12  |  Issue : 1  |  Page : 26

Automated cervical digitized histology whole-slide image analysis toolbox

1 Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
2 Stoecker and Associates, Rolla, MO, USA
3 Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
4 Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
5 Department of Surgical Pathology, University of Missouri Hospitals and Clinics, Columbia, MO, USA

Correspondence Address:
Dr. R Joe Stanley
127 Emerson Electric Co. Hall, 301 W. 16th St, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0040
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jpi.jpi_52_20

Rights and Permissions

Background: Cervical intraepithelial neoplasia (CIN) is regarded as a potential precancerous state of the uterine cervix. Timely and appropriate early treatment of CIN can help reduce cervical cancer mortality. Accurate estimation of CIN grade correlated with human papillomavirus type, which is the primary cause of the disease, helps determine the patient's risk for developing the disease. Colposcopy is used to select women for biopsy. Expert pathologists examine the biopsied cervical epithelial tissue under a microscope. The examination can take a long time and is prone to error and often results in high inter-and intra-observer variability in outcomes. Methodology: We propose a novel image analysis toolbox that can automate CIN diagnosis using whole slide image (digitized biopsies) of cervical tissue samples. The toolbox is built as a four-step deep learning model that detects the epithelium regions, segments the detected epithelial portions, analyzes local vertical segment regions, and finally classifies each epithelium block with localized attention. We propose an epithelium detection network in this study and make use of our earlier research on epithelium segmentation and CIN classification to complete the design of the end-to-end CIN diagnosis toolbox. Results: The results show that automated epithelium detection and segmentation for CIN classification yields comparable results to manually segmented epithelium CIN classification. Conclusion: This highlights the potential as a tool for automated digitized histology slide image analysis to assist expert pathologists.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded364    
    Comments [Add]    
    Cited by others 1    

Recommend this journal