Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 224  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


ORIGINAL ARTICLE
Year : 2016  |  Volume : 7  |  Issue : 1  |  Page : 49

A multisite validation of whole slide imaging for primary diagnosis using standardized data collection and analysis


1 Western Oncolytics, LLC, Pittsburgh, PA 15238; Work peformed while at Omnyx, LLC. Pittsburgh, PA 15222, USA
2 Work peformed while at Omnyx, LLC. Pittsburgh, PA 15222, USA
3 Dynacare, Bowmanville, Ontario L1C 3K5, Canada
4 University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
5 Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15213, USA
6 The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
7 Work peformed while at Omnyx, LLC. Pittsburgh, PA 15222; Department of Translational Medicine, Bristol-Myers Squibb, etc. Princeton, NJ 08543, USA

Correspondence Address:
Katy Wack
Western Oncolytics, LLC, Pittsburgh, PA 15238; Work peformed while at Omnyx, LLC. Pittsburgh, PA 15222
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2153-3539.194841

Rights and Permissions

Context: Text-based reporting and manual arbitration for whole slide imaging (WSI) validation studies are labor intensive and do not allow for consistent, scalable, and repeatable data collection or analysis. Objective: The objective of this study was to establish a method of data capture and analysis using standardized codified checklists and predetermined synoptic discordance tables and to use these methods in a pilot multisite validation study. Methods and Study Design: Fifteen case report form checklists were generated from the College of American Pathology cancer protocols. Prior to data collection, all hypothetical pairwise comparisons were generated, and a level of harm was determined for each possible discordance. Four sites with four pathologists each generated 264 independent reads of 33 cases. Preestablished discordance tables were applied to determine site by site and pooled accuracy, intrareader/intramodality, and interreader intramodality error rates. Results: Over 10,000 hypothetical pairwise comparisons were evaluated and assigned harm in discordance tables. The average difference in error rates between WSI and glass, as compared to ground truth, was 0.75% with a lower bound of 3.23% (95% confidence interval). Major discordances occurred on challenging cases, regardless of modality. The average inter-reader agreement across sites for glass was 76.5% (weighted kappa of 0.68) and for digital it was 79.1% (weighted kappa of 0.72). Conclusion: These results demonstrate the feasibility and utility of employing standardized synoptic checklists and predetermined discordance tables to gather consistent, comprehensive diagnostic data for WSI validation studies. This method of data capture and analysis can be applied in large-scale multisite WSI validations.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed290    
    Printed1    
    Emailed0    
    PDF Downloaded115    
    Comments [Add]    

Recommend this journal